YOUNG ONSET DEMENTIA: DIFFERENT DISORDERS? DIFFERENT EXPERIENCES?

Siobhan Hutchinson MRCPI, Neurologist
Cognitive Clinic, St. James’s Hospital

The DSIDC Annual Conference – 20/11/14
YOD - overview

• Different Disorders?
 • Prevalence
 • Spectrum of diagnoses depend on clinical setting
 • Diagnostic journey
 • Approach for clinicians
 • Experience for patients

• Different Experiences?
 • Care-gap
 • Personal assault
 • Whole-family illness
 • Positive approach

• What is needed?
The prevalence and causes of dementia in people under the age of 65 years

R J Harvey, M Skelton-Robinson, M N Rossor

Objectives: To determine the prevalence of dementia in people under the age of 65 in a large catchment area, and use these figures to estimate the number of younger people affected by dementia in the UK.

Design: Epidemiological catchment area prevalence survey.

Setting: The London boroughs of Kensington and Chelsea, Westminster, and Hillingdon with a total population of 567,500 people.

Participants: All residents of the catchment area with dementia, where the illness began before the age of 65 years. Participants were notified to the study by medical and care professionals. The diagnosis and age of onset was established from all available health and social care records. In total, 227 people were identified, of whom 185 fulfilled the inclusion criteria of having a dementia which started before their 65th birthday.

Main outcome measures: Diagnosis of dementia and differential diagnosis of the cause of the dementia.

Results: The prevalence of dementia in those aged 30–64 was 54.0 per 100,000 (95% CI 45.1 to 64.1 per 100,000). For those aged 45–64 years, the prevalence was 98.1 per 100,000 (95% CI 81.1 to 118.0 per 100,000). From the age of 35 onwards, the prevalence of dementia approximately doubled with each 5-year increase in age. Extrapolating these figures nationally suggests that there are 18,319 (15,296–21,758) people with dementia under the age of 65 in the UK.

Conclusions: The study confirms previous “guesstimates” of the number of younger people affected by dementia in the UK. The prevalence figures generated are robust, and are supported by other smaller and targeted prevalence surveys. The prevalence figures provided by this study will allow health planners to accurately estimate need and plan services.
YOD – Prevalence variability

Table 1 Age and gender specific prevalence rates in the study population

<table>
<thead>
<tr>
<th>Population</th>
<th>All causes of dementia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td>Age range</td>
<td>Male (n)</td>
</tr>
<tr>
<td>30–34</td>
<td>23898</td>
</tr>
<tr>
<td>35–39</td>
<td>18526</td>
</tr>
<tr>
<td>40–44</td>
<td>18982</td>
</tr>
<tr>
<td>45–49</td>
<td>16549</td>
</tr>
<tr>
<td>50–54</td>
<td>15185</td>
</tr>
<tr>
<td>55–59</td>
<td>13983</td>
</tr>
<tr>
<td>60–64</td>
<td>12716</td>
</tr>
<tr>
<td>Over 65§</td>
<td></td>
</tr>
</tbody>
</table>

*Rate per 100 000 people at risk.
†Significance of difference between genders by inference from 95% CI.
‡95% confidence interval for the prevalence rate.
§Subjects who had a dementia starting before the age of 65 years, but were over 65 but still living on the study census day.
Our study underpins and supports initiatives from the Alzheimer’s Society and the Royal College of Psychiatrists to further raise awareness and understanding of dementia in younger people. Every case is a personal story: the prevalence of dementia in younger people is uncommon when compared with dementia in older people, yet every case is personal. While none of these studies used an identical methodology, similar to estimates for the Northern Region, our prevalence figure for young onset Alzheimer’s disease was almost identical to the rate identified in the Cambridge study.

While dementia in younger people is uncommon when compared with dementia in older people, what is less certain is what follow up and support these patients are likely to receive. There are numerous differential diagnoses in a community based catchment area, including Alzheimer’s disease, vascular dementia, frontotemporal dementia, alcohol related dementia, Down’s syndrome, Parkinson’s disease, dementia in multiple sclerosis, corticosteroid treatment, autism, schizophrenia, Pick’s disease, Huntington’s disease, Lewy body disease, Wilson’s disease, and prion disease. Our study was unique in being large enough to consider a range of individual diseases.

The main strength of the study is the combination of a large study of younger people with dementia in the UK, used ascertainment from large population diagnostic registers, and the Cambridge study which used case ascertainment from hospital inpatient records, and the Cambridge study which used case ascertainment from hospital inpatient records. This is the first study to report the prevalence of dementia and differential diagnoses in a community based catchment area. Using data from the 2001 UK Census, we applied the prevalence figures for the UK. Table 2 summarises the estimated numbers of cases in the UK. These figures are important both for service managers of the numbers of people in the UK with young onset dementia and for research. One of the objectives of the study was to generate robust estimates with smaller confidence intervals a much more accurate picture of the prevalence of dementia in younger people in the UK. The prevalence of dementia was close to the estimates derived from an earlier study of younger people with dementia in Down’s syndrome.

The age specific prevalence rates for the four most common causes of young onset dementia are summarised in Table 2 for each five year age band. Based on the prevalence figures derived from this study we estimate that there are 115,000 people under the age of 65 with dementia in the UK. The prevalence rate we identified for Alzheimer’s disease in the 45–64 age group is very similar to estimates for the Northern Region in the 40–54 years age group is very similar to estimates for the Northern Region in the 55–64 years age group is very similar to estimates for the Northern Region. The very low prevalence of dementia in Down’s syndrome is likely to be an artefact due to sampling bias. Despite raising awareness of the project with learning disabilities services, no referrals of cases were made from these sources. In contrast, dementia in Parkinson’s disease and dementia in multiple sclerosis were close to the estimates derived from an earlier study of younger people with dementia in Down’s syndrome.

Thus our prevalence figure for young onset Alzheimer’s disease is 1.5 per 1000 people at risk and the prevalence rate we found for vascular dementia was 3.3 per 1000 people at risk. Frontotemporal dementia was 1.6 per 1000 people at risk and dementia in the Framingham Study was 1.8 per 1000 people at risk. From this is that younger people with dementia inevitably come to medical attention and receive a diagnosis—what is less certain is what follow up and support these patients are likely to receive. There are numerous differential diagnoses in a community based catchment area, including Alzheimer’s disease, vascular dementia, frontotemporal dementia, alcohol related dementia, Down’s syndrome, Parkinson’s disease, dementia in multiple sclerosis, corticosteroid treatment, autism, schizophrenia, Pick’s disease, Huntington’s disease, Lewy body disease, Wilson’s disease, and prion disease.

Table 2 Age specific prevalence rates for the most common causes of young onset dementia

<table>
<thead>
<tr>
<th>Age range</th>
<th>Alzheimer’s disease</th>
<th>Vascular dementia</th>
<th>Frontotemporal dementia</th>
<th>Alcohol related dementia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Rate*</td>
<td>95% CI</td>
<td>n</td>
</tr>
<tr>
<td>40–44</td>
<td>1</td>
<td>2.6</td>
<td>(0.7 to 14.4)</td>
<td>2</td>
</tr>
<tr>
<td>45–49</td>
<td>2</td>
<td>6.0</td>
<td>(0.7 to 21.7)</td>
<td>2</td>
</tr>
<tr>
<td>50–54</td>
<td>5</td>
<td>16.4</td>
<td>(5.3 to 38.4)</td>
<td>2</td>
</tr>
<tr>
<td>55–59</td>
<td>14</td>
<td>50.7</td>
<td>(27.7 to 85.1)</td>
<td>9</td>
</tr>
<tr>
<td>60–64</td>
<td>20</td>
<td>77.3</td>
<td>(47.2 to 119)</td>
<td>10</td>
</tr>
<tr>
<td>30–64</td>
<td>42</td>
<td>17.4</td>
<td>(12.6 to 23.6)</td>
<td>21</td>
</tr>
<tr>
<td>45–64</td>
<td>41</td>
<td>35.0</td>
<td>(25.1 to 47.4)</td>
<td>21</td>
</tr>
</tbody>
</table>

*Rate per 100 000 people at risk.
YOD – Prevalence of different diagnoses

- Alzheimer’s Disease: 34%
- Vascular Dementia: 18%
- FTLD: 12%
- DLB: 7%
- Alcohol: 10%
- Other: 19%

Harvey et al, 2003 Prevalence 45-64 98/100,000
YOD – Prevalence of “Other”

- Huntington's disease - 4.9
- MS dementia - 4.4
- CBD - 1.1
- Down's - 1.6
- PDD - 1.1
- Undefined - 4.9
Demographic and Etiologic Characteristics of 233 Patients

Brendan J. Kelley, MD; Bradley F. Boeve, MD; Keith A. Josephs, MST, MD

Background: Onset of dementia before age 45 years presents a difficult clinical circumstance, having a broad differential diagnosis and numerous psychosocial implications for the patient and their family. Few data exist regarding the demographics characterizing this population or the etiologic diagnoses among those affected.

Objectives: To characterize the demographic characteristics and the etiologic causes of dementia with age at onset younger than 45 years.

Design: Observational, retrospective, single-cohort study.

Setting: Multispecialty group academic medical center.

Patients: We searched the Mayo Clinic Rochester electronic Medical Record Linkage System to identify individuals who were seen for evaluation of progressive cognitive decline between the ages of 17 and 45 years from January 1996 through December 2006. This search identified 233 individuals who met the established inclusion and exclusion criteria.

Main Outcome Measures: All available clinical, laboratory, magnetic resonance imaging, and pathological data were reviewed.

Results: Causes varied, with neurodegenerative etiologies accounting for 31.1% of the cohort; Alzheimer disease was uncommon. Autoimmune or inflammatory causes accounted for 21.3%. At last follow-up, 44 patients (18.7%) had an unknown etiology, despite exhaustive evaluation. Cause varied with age, with inborn errors of metabolism being more common before age 30 years and with neurodegenerative etiologies being more common after age 35 years.

Conclusions: Young-onset dementia (age at onset, <45 years) includes a broad variety of etiologies, with few patients having a potentially treatable disorder. The etiologic spectrum and the relative percentages of patients within etiologic groups differed in important ways from existing reports of early-onset dementia (ie, age at onset, <65 years).

Arch Neurol. 2008;65(11):1502-1508
YOD – our experience

![Graph showing the distribution of YOD cases by age and year of birth.](image)

- **Younger than age 65**
- **Older than 65**

Legend:
- Red: NonNeuroD
- Blue: Neurodegen
YOD – diagnostic journey

• Delayed diagnosis and misdiagnosis

• Recognition?
 • Poor disease awareness among public and professionals
 • Different presenting symptoms than older pwd
 • Memory less likely the presenting complaint
 • Non-specific functional decline
 • Behaviour, mood and language
 • Movement, falls, clumsiness, visual complaints

• Referral?
 • No defined referral pathway for under 65’s
 • No ‘ownership’ by professionals of ypwd under 65

• Rare disorders?
 • Long list of diagnostic possibilities
 • What investigations?
YOD – diagnostic possibilities

- Neurodegenerative
 - AD, FTD, DLB, PDD, PSP, CBD, MSA, Huntington’s, CTE
- Vascular
 - Vascular dementia, CADASIL, CAA
- Inflammatory
 - MS, Neurosarcoid, Bechet’s, Lupus, Limbic encephalitis
- Infectious
 - HIV, TSE, Neurosyphilis, PML, Whipples
- Toxic/Metabolic/Systemic/Nutritional
 - Alcohol, Heavy metal, Wilson’s, Metabolic and Endocrine encephalopathies, B12/Thiamine/Niacin def
- Late-onset childhood neurodegeneration
 - Mitochondrial, Lysosomal storage disorders, Leukodystrophies
YOD – diagnostic approach

The diagnosis of young-onset dementia

Martin N Rossor, Nick C Fox, Catherine J Mummery, Jonathan M Schott, Jason D Warren

A diagnosis of dementia is devastating at any age but diagnosis in younger patients presents a particular challenge. The differential diagnosis is broad as late presentation of metabolic disease is common and the burden of inherited dementia is higher in these patients than in patients with late-onset dementia. The presentation of the common degenerative diseases of late life, such as Alzheimer’s disease, can be different when presenting in the fifth or sixth decade. Moreover, many of the young-onset dementias are treatable. The identification of causative genes for many of the inherited degenerative dementias has led to an understanding of the molecular pathology, which is also applicable to later-onset sporadic disease. This understanding offers the potential for future treatments to be tailored to a specific diagnosis of both young-onset and late-onset dementia.

Rapidly Progressive Young-Onset Dementia

Brendan J. Kelley, MD, Bradley F. Boeve, MD, and Keith A. Josephs, MD MST
Department of Neurology, Mayo Clinic, Rochester, Minnesota; and Robert H. and Clarice Smith and Abigail Van Buren Alzheimer’s Disease Research Program of the Mayo Foundation

Abstract

Objective—To characterize a cohort of individuals who have experienced rapidly progressive dementia with onset prior to age 45.

Background—Very little data regarding the clinical features or clinical spectrum of rapidly progressive young-onset dementia (RP-YOD) is available, primarily consisting of case reports or small series.

Methods—A search of the Mayo Clinic medical record was employed to identify patients who had onset prior to age 45 of rapidly progressive dementia. All available medical records, laboratory data, neuroimaging studies, and pathological data were reviewed.

Results—Twenty-two patients met the pre-defined inclusion and exclusion criteria. Behavioral and affective disorders, cerebellar dysfunction and visual and/or oculomotor dysfunction were common early clinical features within the cohort, as were clinical features often associated with Creutzfeldt-Jakob disease (CJD). Diagnostic testing identified an etiology in most patients.

Conclusions—Presentations of RP-YOD result from a variety of etiologies and significant overlap in clinical features is observed. Clinical features often associated with CJD appear to be common within the entire cohort of RP-YOD patients. Diagnostic studies aided in establishing a diagnosis in most patients, however five had uncertain diagnoses despite exhaustive evaluation.
YOD – diagnostic approach

- Initial features and temporal course – collateral history
- Cognitive- behavioral profile
- Other neurological networks involved?
 - Parkinsonism
 - Cortico-spinal tract
 - Neuropathy or myopathy
 - Ataxia
 - Visual or Gaze Palsy
 - Movement disorder
 - Seizures and myoclonus
 - Dysautonomia
 - Deafness
- Other systemic features?
 - Haematological, liver, renal, respiratory, skin, bone, cataracts, hyponatraemia

Dementia-Plus Syndromes
YOD - investigations

• Blood analysis
 • Systemic disease screen; B12/folate; HIV; Syphilis
 • Limbic encephalitis (Oxford Neuroimmunology Grp):
 • Cell surface anti-VGKC (LGI1 and CASPR2); GAD; NMDA, AMPA, GABAb, Glycine receptors
 • Paraneoplastic: Ma1, Ma2, CV2

• Brain imaging
 • Structural : MRI
 • Functional : FDG PET

• CSF analysis
 • Unusual clinical features, rapid progression, unusual MRI, immunosuppressed, less than 55 year
 • Biomarkers

• Other tests if indicated
 • EEG, EMG/NCS, Autonomic function, Genetic analysis
YOD – imaging biomarkers

- Structural MRI
 - T1/T2 FLAIR/T2 gradient echo/DWI
 - Exclusion
 - Pattern of atrophy
 - Rate of atrophy
YOD – imaging biomarkers

• Functional imaging
 • PET 18-F- FDG
 • DAT dopamine transporter scan
 • (Amyloid PET; FMRI (resting or activation))
YOD – CSF biomarkers

CSF Biomarkers and Incipient Alzheimer Disease in Patients With Mild Cognitive Impairment

Niklas Mattsson, MD
Henrik Zetterberg, MD, PhD
Oskar Hansson, MD, PhD
Niko Andreassen, MD, PhD
Lucilla Parnetti, MD, PhD
Michael Jonsson, MD
Samana-Kaisa Herukka, PhD
Wienke M. van der Flier, PhD
Marinos A. Blankenstein, PhD
Michael Ewers, PhD
Kermit Rich, MD
Elmar Kaiser, MD
Marinus A. Blankenstein, PhD
Philip Scheltens, MD, PhD
Harald Hampel, MD, PhD
Mony de Leon, MD, PhD
Jan Marcusson, MD, PhD
Johannes Schröder, MD, PhD
Pieter Jelle Visser, MD, PhD
Dag Aarsland, MD, PhD
Erik Rose
Ezra Mulugeta, PhD
Magda Tsolaki, MD, PhD
Marcel Verbeek, PhD

Context Small single-center studies have shown that cerebrospinal fluid (CSF) biomarkers may be useful to identify incipient Alzheimer disease (AD) in patients with mild cognitive impairment (MCI), but large-scale multicenter studies have not been conducted.

Objective To determine the diagnostic accuracy of CSF ß-amyloid (Aβ42), total tau protein (T-tau), and tau phosphorylated at position threonine 181 (P-tau) for predicting incipient AD in patients with MCI.

Design, Setting, and Participants The study had 2 parts: a cross-sectional study involving patients with AD and controls to identify cut points, followed by a prospective cohort study involving patients with MCI, conducted 1990-2007. A total of 750 individuals with MCI, 529 with AD, and 304 controls were recruited by 12 centers in Europe and the United States. Individuals with MCI were followed up for at least 2 years or until symptoms had progressed to clinical dementia.

Main Outcome Measures Sensitivity, specificity, positive and negative likelihood ratios (LRs) of CSF Aβ42, T-tau, and P-tau for identifying incipient AD.

Results During follow-up, 271 participants with MCI were diagnosed with AD and 59 with other dementias. The Aβ42 assay in particular had considerable inter-site variability. Patients who developed AD had lower median Aβ42 (356; range, 96-1075 ng/L) and higher P-tau (811; range, 15-183 ng/L) and T-tau (582; range, 83-2174 ng/L) levels than MCI patients who did not develop AD during follow-up (579; range, 121-1420 ng/L for Aβ42; 63; range, 15-163 ng/L for P-tau; and 294; range, 31-2483 ng/L for T-tau, P < .001). The area under the receiver operating characteristic curve was 0.78 (95% confidence interval [CI], 0.75-0.82) for Aβ42, 0.76 (95% CI, 0.72-0.80) for P-tau, and 0.79 (95% CI, 0.76-0.83) for T-tau. Cut-offs with sensitivity set to 85% were defined in the AD and control groups and tested in the MCI group, where the combination of Aβ42/P-tau ratio and T-tau identified incipient AD with a sensitivity of 83% (95% CI, 78%-88%), specificity 72% (95% CI, 68%-76%), positive LR, 3.0 (95% CI, 2.5-3.4), and negative LR, 0.24 (95% CI, 0.21-0.28). The positive predictive value was 62% and the negative predictive value was 88%.

Conclusions This multicenter study found that CSF Aβ42, T-tau, and P-tau identify incipient AD with good accuracy, but less accurately than reported from single-center studies. Intersite assay variability highlights a need for standardization of analytical techniques and clinical procedures.

JAMA. 2009;302(4):385-393 www.jama.com

sages consisting of the protein tau and extracellular deposits of synaptotoxic (ß-amyloid [Aβ]) neurodebris in fibril abnormal routes consisting of the protein tau and extracellular deposits of synaptotoxic (ß-amyloid [Aβ]) neurodebris in fibril abnormal routes.
YOD – diagnostic experience

- Delayed referral – multiple physician visits
- Assessment – many steps – prolonged
 - YPWD come alone – collateral hx missing
 - Periodic clinical assessments needed
 - Step-wise or repeated investigations
- Disclosure of diagnosis
 - Piece-meal with each visit
 - Doctor to ypwd/family without support
 - ‘Teach-back’ – poor communication/comprehension initially
- Post-diagnosis support
 - None in community
 - Hospital social-worker reaches out – poor response
 - Continued care in Cognitive Clinic
YOD – what then?

• “Every step is a fight”
• “Nothing out there for me”
• ‘Care-gap’
 - (Cahill, O’Shea, Pierce 2012)

Early-Onset Dementia

The Needs of Younger People with Dementia in Ireland

Trutz Haase
August 2005
YOD – ‘Care-gap’ wider

- Service provision is age-defined, fragmented, ad-hoc
- Problems with access to:
 - Medical and psychiatric services
 - Community health and social care
 - Residential care
 - Peer support or counseling for ypwd
 - Carer support
- Rely on health professionals ‘bending rules’
- Rely on voluntary organisations providing care
YOD – personal assault

- Sense of identity
- Employment (income, status)
- Dependents
 - Young or teenage children
- Relationship with partner
 - Increased conflict; Reduced intimate contact
- Relationship with friends
 - Retreat – poor awareness and sense of helplessness?
 - Unlike any other chronic disability – in cognitive impairment old relationships loose context. New friendship with carers.
- Awareness much greater in ypwd (van Vliet, 2013)
 - Apathy, depression and higher awareness in YO AD (NeedYD, 2012)
YOD – “whole family illness”

- Greater burden on nuclear family
 - Partner and dependent children provide most of care
 - Family become isolated as extended family and friends re-treat
- Partner struggles
 - Financial – Care of ypwd – Care of children
 - Difficulty with behavioural symptoms
 - Grief at loss of spouse and mid-life projects and uncertain future
 - High levels of burden, stress and depression (Van Vliet, 2010)
- Children as carers (NeedYD, 2013)
 - Difficulty coping, difficulty understanding change in parent, not included in discussions with professionals, concern for future
- Greater proportion of ypwd live at home for longer (NeedYD, 2013)
 - Struggle to find support – flexible person-specific care required
 - More likely to precarious balance with un-supervised ypwd
 - Formal care when crisis - disease advances or behavioural symptoms or failure with ADLs or safety risk highlighted
YOD – positive approach

• Diagnosis
 • Provides explanation
 • Focus on living well and management of symptoms
 • Plan for future

• Cognitive adaptation and rehabilitation
 • Not just memory – language/visuospatial/motor deficits
 • Energy and focus into rehabilitation
 • Driven and sourced by ypwd

• Normalise the life-cycle
 • Workplace engagement program: side by side
 (Roberston et al Dementia 2013)
 • Improve peer group contact
YOD – what’s needed: close the gap

• Awareness of the disorder and experience
 • Professional and Public
 • Experience of ypwd and family

• Access to well demarcated care pathway
 • Health and social care ‘ownership’
 • Integration of existing services
 • Resourced specific services for ypwd
 • Recognition of importance of community care for ypwd

• Professional advocate for ypwd
 • Case-manager/ Key-worker
 • Dementia Advisor of ASI
 • Needs assessment
YOD - summary

• Different Disorders?
 • Wider spectrum of disorders – clinically challenging
 • Same disorders with different presentations

• Different Experience?
 • Poor health and social provision: Wider Care-Gap
 • Specific and significant psycho-social effects on ypwd and their family

• Appeal
 • Inclusion in National Dementia Strategy
 • Recognition of and Provision for the specific needs of ypwd